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Abstract
Purpose. Considering the difficulty of accurately estimating energy expenditure (EE) in habitual physical activity (PA), 
efforts to improve estimation accuracy are well warranted. The aim of the study was, first, to validate the K-Sense EE es-
timation system to improve EE estimation accuracy of human low-intensity activities, and, second, to compare K-Sense EE 
estimation values against ActiGraph (GT3X+) accelerometer-derived EE estimates.
Methods. A comparative analysis investigated the K-Sense EE estimation values against indirect calorimetry and ActiGraph 
(GT3X+) EE estimates. A sample of 18 participants (age: 24.0 ± 5.2 years) performed eight sedentary/low intensity lifestyle 
activities, each wearing K-Sense with sensors attached to right wrist and ankle.
Results. The K-Sense estimation accuracy ranged from 89.4% to 99.9%, outperforming ActiGraph equations, which were 
found to overestimate EE of these low-intensity activities, achieving 70.3% estimation accuracy at best. T-tests showed no 
statistically significant differences between K-Sense and indirect calorimetry values. Bland-Altman plots, however, illus-
trated an EE estimation error ranging from –9 to 7 kcal (with 95% confidence limits of agreement) among individuals.
Conclusions. EE evaluation with low-cost inertial measurement units, such as those found in K-Sense, is a valid method 
in comparison with indirect calorimetry and ActiGraph accelerometry.
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Introduction

Obesity, an unwanted positive energy balance, is 
a serious epidemic that can be largely contributed to by 
excessive food intake and diminished physical activity 
(PA). In fact, more than 1/3 of United States (U.S.) 
adults (35.7%) are obese [1]. Typical obesity-related 
conditions include heart disease, stroke, type 2 dia-
betes, and certain types of cancer, which are some of 
the leading causes of preventable death. The estimated 
annual medical cost of obesity in the U.S. is $147 billion 
per year, with annual medical spending 42% higher for 
an obese individual compared with a lean individual [2]. 
Although the benefits of healthy weight are well docu-
mented, maintaining healthy energy balance has shown 
to be difficult.

Accurate assessment of energy expenditure (EE) is 
a critical component of successful weight management. 
Total EE can be expressed in three components: basal 
metabolic rate (covers the energetic cost of the processes 
essential for life), diet-induced thermogenesis (results 
from the digestion, absorption, and conversion of food 
into energy), and activity-induced EE [3]. Activity-in-
duced EE is associated with muscular contractions 
involved in body movements and maintenance of pos-
ture, and it is the most variable component of total 
EE [3]. Research has shown that individuals, regard-
less of their weight status or sex, tend to under-report 
energy intake [4] and overestimate their EE [5, 6] and 
PA [5, 7, 8]. For instance, Willbond et al. [6], examining 
normal weight participants, showed that for a 200-kcal 
exercise bout, the participant estimation ranged from 
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120 to 4000 kcal. In addition, studies have reported 
that PA and EE estimation is less accurate in over-
weight persons [5, 9] and that overestimation is greater 
with older age and higher body fatness [10].

Owing to the complex nature of EE, studies to de-
sign new technology for more accurate assessment of 
PA and EE have been recommended [8, 11]. Technolo-
gies such as metabolic carts and calorimeter rooms 
provide the most accurate assessment of total EE; how-
ever, they are difficult and intrusive to wear or place 
a significant burden on a person. Similarly, doubly 
labelled water is regarded as an accurate approach to 
EE evaluation, but it is relatively expensive and the 
consumption of doses of doubly labelled water, con-
sisting on two 2H2 

18O isotypes, can be burdening to 
research participants [12]. Currently, most epidemio-
logical studies have relied on waist- or wrist-mounted 
accelerometers [13], which are devices that measure 
body movements based on changes in motion. Most 
accelerometers in use are micro-electromechanical-
system capacitive accelerometers, capable of detecting 
both static and dynamic accelerations in either two or 
three orthogonal planes (anteroposterior, mediolateral, 
and vertical) [14]. Depending on a target population 
and aims of a study, accelerometer data are normally 
collected with the use of one or several body-mounted 
devices attached around body parts, such as waist/
hip, wrist, upper thigh, or ankle [13].

Accelerometers are typically designed to catego-
rize the duration and intensity of habitual PA of hu-
mans [15]. Accelerometers use validated algorithms to 
convert raw accelerometer-derived counts to EE esti-
mates, or apply specific machine-learning techniques 
to extract raw acceleration data translated into EE 
estimation models [16]. Current linear-regression-based 
EE equations have normally been developed by pre-
dicting ‘ground truth’ values, such as indirect calorim-
etry, doubly labelled water, or direct observation values, 
from the values of accelerometer signals and other 
physical characteristics, such as age, sex, height, weight, 
and body mass [17]. Numerous different regressions 
equations for various types of human activities have 
been created. For example, the ActiGraph GT3X+ 
(ActiLife 6) accelerometer EE equations have used: 
(a) a single linear regression to predict equations based 
on either walking and running [18–24] or moderate-
intensity lifestyle activities [8, 20]; or (b) a 2-regres-
sion model to distinguish between continuous walk-
ing/running and intermittent lifestyle activity on the 
basis of the variability in the accelerometer counts 
[24]. In general, regression equations developed for 
walking and jogging slightly overestimate the energy 
cost of walking and light-intensity activities, while they 

greatly underestimate the energy cost of moderate-in-
tensity lifestyle activities. In contrast, regression equa-
tions developed with the use of moderate intensity 
lifestyle activities provide a closer estimate of EE, but 
greatly overestimate the energy cost of sedentary and 
light activities and underestimate the energy cost of 
vigorous activities [23, 25]. More recently, methodol-
ogies such as Gaussian process-based regression [26], 
hidden Markov method [27], or machine learning [28] 
have been introduced to improve the accuracy of the 
accelerometer-based EE estimation. Although these 
novel approaches have shown some potential to im-
prove the accuracy of EE estimation, early evidence 
suggests that their generalizability is limited because 
of a large inter-subject variance and small sample 
sizes [27]. In addition, the hidden Markov method re-
quires acceleration data to be collected in different epoch 
lengths, not available in Crouter 2-regression [24], Hen-
delman [20], Freedson VM3 [29], or Swartz [30] estima-
tion models [25]. The raw-data-based analytic models, 
particularly multidimensional algorithms, are still being 
developed, validated, and optimized by researchers and 
device manufacturers [16]. To improve the accuracy 
of accelerometer-based EE estimation and overcome 
humans’ tendency to overestimate their EE, it is im-
portant to design technology that facilitates successful 
weight management. This is especially significant when 
detecting total EE of overweight populations owing to 
light-intensity activities that account for the majority 
of the day [19, 23, 31]. To overcome this barrier and 
improve EE estimation accuracy of human light-in-
tensity PA, an accelerometer-based K-Sense system 
was recently introduced [32, 33]. The K-Sense EE sys-
tem uses movement data derived with inertial meas-
urement units (IMUs), mounted to an individual’s 
wrist and ankle [32].

The purpose of this study, building on the previ-
ous research on K-Sense, was twofold. Firstly, the study 
aimed to validate the K-Sense EE estimation system 
to improve EE estimation accuracy of human activi-
ties, and validate the K-Sense EE estimation against 
indirect calorimetry. On the basis of the findings of 
Zaman et al. [32, 33], it was hypothesized that the 
K-Sense equations would achieve 95% EE estimation 
accuracy compared with indirect calorimetry in labo-
ratory conditions. Secondly, the study aimed to compare 
K-Sense EE estimation values against ActiGraph (GT3X+) 
accelerometer-derived EE estimates. It was hypothe-
sized that K-Sense would provide improved accuracy 
estimates on EE compared with current accelerometer-
derived equations of Crouter 2-regression [24], Hen-
delman [20], Freedson VM3 [29], and Swartz [30].
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Material and methods

Participants

The sample comprised 18 (9 females and 9 males) 
individuals (age: 24.0 ± 5.2; BMI: 27.1 ± 5.3 kg/m2) 
from the Mid-South U.S. (Table 1), with 13 (> 70%) being 
obese. All eligible subjects (inclusion criterion: BMI > 
21 kg/m2) who were willing to participate in the study 
were accepted. No participant incentives were avail-
able. In addition, before the participation, all subjects 
were screened for pregnancy or pathologies such as 
breathing difficulties that might have caused exclusion. 
All participants were asymptomatic, with no medical 
condition that might prevent their participation in the 
study.

Experiment

After signing the consent, the participants com-
pleted a background survey and the Physical Activity 
Readiness Questionnaire [34]. Next, their weight was 
measured without shoes or heavy outer garments to 
the nearest 0.1 kg, with the use of electronic scales 
(Oregon Scientific®, U.S.). Height was determined with-
out shoes to the nearest 0.1 cm, with a standard phy-
sician’s scale, before fitting the participants with the 
testing equipment.

The experimental design applied in the study has 
already been reported elsewhere [32]. The experimen-
tal setup consisted of two supervised 50-minute labo-
ratory session in which participants were asked to per-
form eight light-intensity activities [35]. The first session 
comprised lying and watching television, sitting qui-
etly and watching television, standing quietly, and 
cleaning (sweeping a f loor area of 4 × 4 feet). The 
second session involved sitting (working on a laptop), 
reclining and reading a book, putting away groceries 
(lifting 15.5-ounce cans from worktop to pantry using 
both hands), and playing video games (an Xbox One 

rally game). Participants performed each activity for 
10 minutes with 30-second transitions. The starting 
and finishing time of each activity were recorded with 
a stopwatch. The stopwatch and the internal clock of 
the accelerometer were synchronized to the same ref-
erence time. As a comparison, each participant wore an 
ActiGraph GT3X+ accelerometer during the experiment.

Instrumentation

K-Sense wireless sensor system hardware

The participants were fitted with the K-Sense wire-
less sensor system for light-intensity activities; the sys-
tem consisted of two body-mounted sensors on the 
subjects’ wrist and ankle. Technical specifications of 
the prototype device and early validation studies on the 
activity identification and EE have been reported pre-
viously [32, 33]. The K-Sense system utilizes SparkFun 
9DoF Razor IMUs, involving 3-axis accelerometers 
(ADXL345), gyroscopes (IDG3200), and magnetome-
ters (HMC5883L). Data are generated by the hardware’s 
IMU and sent through a Bluetooth serial interface to 
a computer, where they are time-stamped and logged. 
The K-Sense uses an 800-mAh battery, but the pro-
totype version does not utilize the on-board memory. 
The Bluetooth 4 wireless connectivity allows for 30 m 
of connectivity range to a laptop or cellphone, and the 
device continuously streams data to the base station 
for logging purposes. The size of each device is 1 × 1 
inches, and a potential commercialized version of the 
K-Sense device is estimated to cost around $150. 
The software platform for K-Sense is currently avail-
able and it is free for users.

K-Sense energy estimation

K-Sense is based on utilizing angular sensor data, 
provided by the IMU, to estimate the amount of work 
necessary to accomplish specific movements. For sim-

Table 1. Characteristics of the study participants

Females (n = 9) Males (n = 9) Total (n = 18)

Age 26.2 (7.5) 21.90 (1.29) 23.95 (5.15)
Ethnicity/race (% w/b) 78/22 100/0 89/11
Height (cm) 162.0 (7.9) 183.3 (4.9) 172.7 (12.4)
Weight (kg) 52.1 (6.3) 93.4 (8.8) 79.2 (18.7)
BMI (kg/m2) 26.5 (2.1) 28.6 (4.0) 27.1 (5.3)

Values are means (SD).
BMI was calculated with Centers for Disease Control software.
w – white, b – black, BMI – body mass index
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plicity, sensors were placed on the right side of the body 
on the wrist and ankle. It was assumed that each limb 
would be expending equal amounts of energy whether 
the arms are moving as a mirror image to each other 
or the arms and legs are moving in a counteracting 
manner. The K-Sense system utilizes 4-dimensional 
quaternion (a representation of a scalar sum and 
a 3-dimensional vector to represent the orientation 
of an object in a 3-dimensional space) vector-derived 
equations. Ultimately, total EE is a function of the an-
gular movement of the arms and legs along with the 
basal metabolic rate for the core of the body, the amount 
of energy expended to maintain the body’s core func-
tions, typically based on a person’s height, weight, and 
age [36, 37]. K-Sense estimates EE where rotational 
work, W = , is a function of , rotational force and , 
angular displacement. By combining momentum, I, 
and angular acceleration, , work becomes W = I . 
Angular acceleration is a function of tangential accel-
eration,  and the radius, r, from the limb joint to the 
limb centre of mass, resulting in work being defined 
as W = I ( /r). Finally, by combining angular velocity, 

, with equations ac = 2r and I = mr2, we derive:

W = mr2 2

where W, work, is a function of mass, m, the radius 
squared, the angular velocity squared, and the angular 
displacement.

This equation forms the basis of the K-Sense en-
ergy estimator.

Metabolic measurements

Oxygen uptake and related variables were meas-
ured with the Parvo Medics’ TrueOne® 2400 metabolic 
measurement system. The unit was turned on at least 
30 minutes before each session, and the system was 
calibrated before every measurement in accordance 
with the manufacturer’s instructions. This involved 
the pneumotachometer being calibrated with the use 
of five strokes of a 3-l syringe at graduated flow-rates 
from 50–80 l ∙ min–1 up to > 400 l ∙ min–1. The gas ana-
lysers were calibrated with a 2-point fully automated 
process involving room air and a certified gas (3.98% 
CO2, 16.03% O2, balance N2; Airgas Specialty Gases, 
Lenexa, U.S.). Fractions of oxygen and carbon dioxide 
were measured via a paramagnetic oxygen analyser and 
an infrared, single beam, single wave-length carbon 
dioxide analyser, respectively. During all experiments, 
the participants wore an ‘over-the-nose’ adapted mask 
that was connected by plastic tubing to the gas analyser. 

Data were collected, stored, and reported on a breath-
by-breath basis, and EE was determined from the 
oxygen consumption and carbon dioxide production, 
and the volume of expired air, in accordance with the 
manufacturer’s equations. The average measured oxy-
gen consumption (VO2) was determined and converted 
to relative VO2 (ml ∙ kg–1 ∙ min–1).

Accelerometry

The GT3X+ activity monitors (ActiGraph LLC, Pen-
sacola, U.S.) were used. The GT3X+ is a 3-axial ac-
celerometer designed to detect vertical accelerations 
(sensitive to movement along three axes) ranging in 
the magnitude of ± 6 g [38]. Thirty-Hz frequency re-
sponses with 1-second epoch were used. The devices 
were positioned on the participants’ right midaxillary 
line at the level of the iliac crest, with elastic bands. 
Wrist- and waist-worn ActiGraph accelerometers have 
shown to be valid and reliable [39, 40]. The acceler-
ometers were calibrated at the beginning and end of 
the study and each time were found to be within ± 3.5% 
of the reference value, which is within the manufac-
turer’s standards. For each activity, accelerometer data 
were converted to average counts ∙ min–1 and entered 
appropriately into each equation to predict EE. EE esti-
mates and validation protocols are presented in sub-
sequent publications [20, 24, 29, 30]. The equation 
algorithms are presented in Table 2.

Data analyses

The accuracy of the K-Sense EE estimation tech-
nique was estimated and reported with the use of a mean 
standard error (SE), that is a total error at the end of 
each trial, and root mean squared error (RMSE), a sum-
mation of each window’s error across a trial. Indirect 
calorimetry-measured EE and K-Sense estimated EE 
were compared with 2-way mixed effects, absolute 
agreement, single-measurement, intra-class correlation 
coefficient (ICC) and paired-samples t-tests, with the 
statistical significance levels of 0.05 and 0.001. The 
Bland-Altman method was used to calculate the mean 
difference between the two methods of measurement, 
and 95% limits of agreement were applied for describ-
ing the total error between the two methods. Finally, 
paired-samples t-test analyses were conducted to de-
termine whether ActiGraph-based EE estimations 
statistically significantly differed from the indirect calo-
rimetry results.
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Ethical approval
The research related to human use has been com-

plied with all the relevant national regulations and 
institutional policies, has followed the tenets of the 
Declaration of Helsinki, and has been approved by the 
Institutional Review Board of the University of Memphis.

Informed consent
Informed consent has been obtained from all indi-

viduals included in this study.

Results

EE estimation accuracy of the K-Sense 

Table 2 presents means and SEs showing that the 
K-Sense system was able to achieve EE accuracy 
ranging from 89.4% to 99.9%. Best accuracy was ob-
tained with the wrist and ankle solution from activi-
ties such as lying (99.9%), sitting (98.3%), and read-
ing a book (97.3%). Most inaccurate estimations were 
derived from monitor work (89.4%) and putting away 

groceries (90.2%). To understand the effects of the kine-
matic solution of the K-Sense, Figure 1 demonstrates 
the cumulative energy over time for a single trial, illus-
trating that the K-Sense estimates never exceed 4 kcal 
away from the indirect calorimetry. Table 2 presents the 
measured EE for each activity, showing that K-Sense 
overestimated five activities (lying, sitting, standing, 

Table 2. Accuracy of the K-Sense energy expenditure estimation and comparison of the estimation accuracy  
of the different energy estimation algorithms (n = 18)

Activity
Activity 

code

Indirect 
calorimetry

K-Sense  
(wrist and ankle)

Crouter 2006 [24]
2.330519 + (0.001646 

× counts ∙ min–1) – 
[1.2017 × 10–7 × 

(counts ∙ min–1)2] + 
[3.3779 × 10–12 × 
(counts ∙ min–1)3]

Hendelman 2000 [20]
2.922 + (0.000409 × 

counts ∙ min–1)

Schwarz 2000 [30]
2.606 +  

(0.0006863 ×  
counts ∙ min–1)

Freedson VM3 Adulta 
2011 [29]

VM3 Adulta kcal ∙ min–1 
= 0.001064 × VM + 

0.087512(BM) – 
5.500229

kcal kcal SE kcal SE kcal SE kcal SE kcal SE

Session 1
Lying 7010 11.54 11.53 0.148* 15.78 45.40 14.08 30.35 14.77 35.20 0.74 93.85
Sitting 720 12.15 12.36 1.741* 15.27 33.89 13.84 22.32 14.39 25.88 0.46 96.38
Standing 7040 12.21 12.59 3.061* 14.21 27.62 13.58 26.24 13.85 27.71 0.25 98.14
Sweeping 
floor

5010 14.52 13.48 7.175* 14.79 32.14 14.22 27.34 15.04 29.95 0.37 97.35

Session 2
Monitor 
work

9040 12.81 11.45 10.630* 14.24 34.31 13.57 30.89 14.16 70.85 0.24 98.16

Reclining  
and reading  
a book

9030 11.93 12.26 2.714* 14.16 31.23 13.60 26.86 13.74 29.28 0.12 98.96

Putting away 
groceries

5055 14.50 13.08 9.802* 13.98 21.90 13.62 21.50 13.82 19.74 0.18 98.96

Playing 
video games

9045 11.57 12.07 4.338* 14.98 39.68 13.87 31.91 14.21 33.08 0.48 96.32

Activity code refers to the Physical Activity Compendium Activity Codes by Ainsworth et al. [35].
Sample size for session 2 activities was 16.
a The unit of the Freedson equation is kcal, whereas the other equations units are in metabolic equivalents.
* K-Sense-derived SEs.
VM – vector magnitude, BM – body mass (kg), SE – standard error

Figure 1. Energy expenditure is cumulative over time 
and in this example, K-Sense estimation tracks indirect 

calorimetry data. At the worst point, K-Sense is off  
by 4 kcal before converging to 0.9 kcal
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Table 3. Component evaluation of the K-Sense

Activity

Indirect 
calorimetry

K-Sense  
(wrist and ankle)

K-Sense  
(ankle)

K-Sense  
(wrist)

kcal kcal Error kcal Error kcal Error

Session 1
Lying 11.54 11.53 0.15 12.36 15.71 11.33 14.42
Sitting 12.15 12.36 1.74 13.25 16.48 12.15 13.31
Standing 12.21 12.59 3.06 13.54 21.08 12.36 18.39
Sweeping floor 14.52 13.48 7.18 14.48 60.30 13.29 25.48

Session 2
Monitor work 12.81 11.45 10.63 12.28 25.96 11.25 26.68
Reclining and reading a book 11.93 12.26 2.714 13.18 23.28 12.04 18.41
Putting away groceries 14.50 13.08 9.80 17.85 46.31 12.01 20.82
Playing video games 11.57 12.06 4.34 12.96 28.84 11.86 24.36

Table 4. Two-way random-effect, absolute agreement, single measurement ICC model with 95% CIs compared  
against indirect calorimetry

K-Sense Crouter 2006 [24] Hendelman 2000 [20] Schwarz 2000 [30]
Freedson VM3 Adult 

2011 [29]

Activity ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI ICC 95% CI

Session 1
Lying 0.922** [0.790, 0.971] 0.457* [–0.231, 0.786] 0.700* [0.018, 0.898] 0.640* [–0.145, 0.879] 0.041 [–0.065, 0.244]
Sitting 0.909** [0.703, 0.964] 0.466 [–0.203, 0.785] 0.763* [0.264, 0.903] 0.712* [0.099, 0.900] 0.017 [–0.046, 0.153]
Standing 0.864** [0.637, 0.949] 0.853** [0.607, 0.945] 0.781* [0.415, 0.918] 0.781* [0.414, 0.918] 0.152 [–1.267, 0.683]
Sweeping floor 0.689* [0.168, 0.884] 0.487 [–0.373, 0.808] 0.685* [0.086, 0.872] 0.597* [–0.076, 0.849] 0.040 [–1.566, 0.641]

Session 2
Monitor work 0.807** [0.448, 0.933] 0.699* [0.140, 0.895] 0.726* [0.216, 0.904] 0.672* [0.062, 0.886] 0.058 [–1.697, 0.671]
Reclining and 
reading a book

0.901** [0.695, 0.959] 0.707* [0.162, 0.898] 0.782* [0.376, 0.924] 0.702* [0.146, 0.896] 0.006 [–0.780, 0.648]

Putting away 
groceries

0.689* [0.111, 0.891] 0.597* [–1.153, 0.859] 0.677* [0.076, 0.887] 0.677* [0.076, 0.887] 0.149 [–1.437, 0.703]

Playing video games 0.739* [0.252, 0.909] 0.730* [0.226, 0.906] 0.605* [–0.130, 0.862] 0.704* [0.154, 0.897] 0.299 [–1.006, 0.755]

** F-test p-value < 0.001, * F-test p-value < 0.05
ICC – intra-class correlation coefficient, CI – confidence interval, VM – vector magnitude

reading a book, and playing video games) and under-
estimated three activities (sweeping floors, monitor 
work, and putting away groceries), but none of these dif-
ferences was statistically significant. Table 2 illustrates 
the differences between measured EE per activities 
against EE estimates on K-Sense, and Table 3 shows 
the accuracy between different K-Sense device combi-
nations (wrist only, ankle only, wrist-ankle). Whereas 
a two-sensor (wrist-ankle) combination demonstrated 
an 89.4% to 99.9% EE estimation accuracy, one-sensor 
systems (wrist only, ankle only) achieved 87.6% accu-
racy at best.

As presented in Table 4, ICC tests between indi-
rect calorimetry and K-Sense indicated excellent re-
liability in lying (ICC = 0.922; 95% confidence inter-
val [CI]: [0.790, 0.971]), sitting (ICC = 0.909; 95% CI: 

[0.703, 0.964]), and book reading (ICC = 0.901; 95% CI: 
[0.695, 0.959]). Although sweeping the floor, putting 
away groceries, and playing video games showed only 
moderate reliability ICCs, ranging between 0.689 and 
0.739, the ICC values were statistically significant at 
the 0.05 level. T-tests showed no statistically significant 
differences between measured and estimated EE 
(p values ranging from 0.121 to 0.974) (Table 5). Bland-
Altman plots reflect the difference between K-Sense 
measured EE and indirect calorimetry (Figure 2). The 
plots illustrate the problem with both underestimating 
and overestimating EE among individuals. The width 
of the 95% confidence limits of agreement varied from 
–9 to 7 kcal, indicating some discrepancies between 
the two methods for individual participants.
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Table 5. Paired samples t-test comparisons of the estimation accuracy of the different energy estimation algorithms

Activity
K-Sense

Crouter 2006 
[24]

Hendelman 2000 
[20]

Schwarz 2000 
[30]

Freedson VM3 
Adult 2011 [29]

t p t p t p t p t p

Session 1
Lying 0.03 0.974 4.20 0.001 3.75 0.002 4.42 < 0.001 12.69 < 0.001
Sitting 0.41 0.687 2.82 0.012 2.58 0.019 3.39 0.003 14.69 < 0.001
Standing 0.54 0.599 2.65 0.017 1.72 0.104 2.01 0.061 11.13 < 0.001
Sweeping floor 1.10 0.288 0.20 0.844 0.29 0.773 0.34 0.711 12.47 < 0.001

Session 2
Monitor work 1.64 0.121 1.37 0.190 0.80 0.435 1.26 0.228 10.42 < 0.001
Reclining and reading a book 0.50 0.624 2.38 0.031 2.16 0.065 1.99 0.065 11.44 < 0.001
Putting away groceries 1.34 0.200 0.56 0.586 0.95 0.358 0.74 0.472 13.56 < 0.001
Playing video games 0.60 0.556 4.52 < 0.001 3.06 0.008 3.27 0.005 13.88 < 0.001

VM – vector magnitude

Figure 2. Bland-Altman comparison of the indirect calorimetry and K-Sense EE estimation models. Y-axis presents the 
difference between indirect calorimetry and K-Sense estimations, and X-axis displays the averages

Comparison of the EE estimates

The differences between indirect calorimetry-de-
rived, K-Sense predicted and waist-mounted Acti-
Graph accelerometer-derived EE values are present-
ed in Table 2. ActiGraph algorithms overestimated 
EE of light-intensity activities, achieving a 70.3% es-
timation accuracy at best. Table 4 presents the paired 
t-test values for between indirect calorimetry, K-
Sense, and ActiGraph EE values. The findings of the 
paired t-tests showed that the Crouter [24], Hendel-
man [20], and Schwarz [30] algorithms did not sta-
tistically differ from indirect calorimetry values in 
three activities (sweeping floors, monitor work, and 
putting away groceries). In addition, the Hendelman [20] 
and Schwarz [30] algorithms provided similar EE es-
timates in the standing and reading a book activities.

Discussion

The presented laboratory study involved eight sim-
ulated sedentary to light-intensity tasks, showing an 
improved accuracy compared with the previous ef-
forts to validate the K-Sense monitoring system [34, 35]. 
Similarly, when compared with the ActiGraph (GT3X+) 
accelerometer-derived EE estimates, this study reported 
higher estimation accuracy than the existing regres-
sion-based algorithms [20, 24, 29, 30].

The study proved that the K-Sense monitoring sys-
tem was able to achieve reasonable EE accuracy when 
compared with indirect calorimetry, ranging from 89.4% 
to 99.9%, with the error never exceeding 4 kcal. The 
paired t-test analyses showed that the K-Sense EE 
estimation values did not statistically significantly 
differ from the EE values measured by indirect calo-
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rimetry. The study demonstrates that unobtrusive and 
open source PA monitoring can improve the accuracy 
of EE of light-intensity movements. Best estimation 
accuracy was achieved in activities such as lying (99.9%), 
sitting (98.3%), and book reading (97.3%).

Increased estimation accuracy can contribute to 
population health by improving the accuracy of eve-
ryday EE among the overweight and elderly, which 
are the subgroups that have shown to overestimate 
their habitual PA EE [5, 9, 10]. The findings of this 
study showed an improved EE estimation accuracy 
in comparison with the previously reported 92% esti-
mation accuracy [32, 33].

This improvement was mostly due to increased mon-
itoring time (4 minutes of data in the study by Zaman 
et al. [32] and 10 minutes of data in this study). In-
creased number of measurement points, i.e., repeat-
ed measurements, will reduce the signal/noise ratio, 
and thus increase accuracy.

The less accurate estimations were derived from 
monitor work (89.4%) and putting away groceries 
(90.2%). A partial explanation for these estimates is 
our assumption of limb symmetry, i.e., the assumption 
that limb movements would counteract each other, 
expending equal amounts of energy. In addition, the 
source of error could be improved by weighing body 
parts and basal metabolic rate more carefully. The larg-
est impact of the basal metabolic rate-related meas-
urement error is expected to be in the EE estimation 
of low-intensity activities. The lower the intensity level 
of activities, the greater the proportional value of EE 
is due to basal metabolic rate.

When comparing with ActiGraph accelerometer-
derived EE estimates, the K-Sense approach was able 
to achieve improved accuracy. The study reported that 
the assessed regression algorithms overestimated EE 
of the light-intensity activities, achieving only 70.3% 
estimation accuracy at best. Whereas t-test analyses 
did not show any statistically significant difference 
between K-Sense and indirect calorimetry EE values 
in any activities, the analyses proved that the Hendel-
man [20] and Schwarz [30] accelerometer equations 
were able to achieve statistically significant estima-
tion accuracy in five out of eight activities. Previous 
studies have shown regression-based EE equations 
to overestimate the actual EE of light-intensity activi-
ties [23, 24]. However, recently, ActiGraph accelerom-
eters have been found to underestimate the EE (26%) 
of the free-living activities measured by whole room 
indirect calorimetry [41].

It is important to design and improve current tech-
nology to enhance the accuracy of accelerometer-based 

EE estimation and to facilitate successful weight man-
agement [8]. Currently available technology, including 
K-Sense, can provide researches with relatively accu-
rate EE estimates. In the future, we envision a kinematic 
solution that can be integrated into common wearable 
platforms such as a smartphone, shoes, and watches.

There were some limitations that need to be ad-
dressed when interpreting the results. First, this exam-
ination was conducted with the K-Sense prototype, 
which is not ready for commercialization. Therefore, 
the cost estimations are dependent on the hardware 
prices. It is notable that the software is currently freely 
available. Second, it should be emphasized that the 
steady state for each activity was not established for 
entire 10 minutes but an average 8 minutes 42 seconds 
(SD = 4.32 s) per activity. Thus, the EE estimates of 
the eight activities should not be interpreted as ac-
curate descriptions of the EE of each of these activities, 
but laboratory simulations of eight light-intensity ac-
tivities. In addition, the participants’ basal metabolic 
rate was estimated on the basis of their height, weight, 
and age [36, 37], and not measured objectively in labo-
ratory. Although this contributes to the measurement 
error, this approach is widely applied because it is cost- 
and time-effective and provides good accuracy [32, 33]. 
The usage of the dual-energy X-ray absorptiometry for 
basal metabolic rate indication can increase the accu-
racy of the estimation [33]. However, the cost of this 
increased accuracy comes with the financial burden. 
Moreover, our sample consisted of lean and obese par-
ticipants. It may be that the error in the K-Sense EE 
estimation was partly due to this variability in our 
sample. Finally, this manuscript compared the K-Sense 
algorithm with the linear regression-based algorithms. 
Lately, neural networks or pattern-recognition tech-
niques have shown improved accuracy compared with 
the linear regression approaches [16].

Conclusions

This study showed that the K-Sense monitoring 
system was able to achieve a reasonable EE accuracy, 
with the error never exceeding 4 kcal, and the error 
did not differ from that of indirect calorimetry. In addi-
tion, the K-Sense equations allowed to achieve a higher 
accuracy across all measured activities compared with 
the accelerometer-based EE estimations.
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